Ein Aquarium auf dem Weg ins All

Ein Aquarium auf dem Weg ins All
Weltraumaquarium
Das Aquarium ist das Herzstück des Experiments: Links ist das Hornkraut zu sehen, unten der Filter und rechts eine Schnecke im Fischabteil. In dem runden Abteil oben rechts werden die Fischeier eingesetzt – der Futterautomat für die späteren Larven und auch für die Fische befindet sich direkt darunter.
Foto: FAU/Sebastian M. Strauch

Die Größe und das Gewicht entsprechen in etwa dem eines Bierkastens, doch im Inneren ist der Metallcontainer vollgepackt mit ausgefeilter Technik für kleine Pflanzen und Tierchen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Universität Hohenheim schicken am 19. April 2013 ein künstliches Ökosystem ins All, um herauszufinden, wie Zellen und Organe auf Schwerelosigkeit reagieren. Dadurch erhoffen sie sich unter anderem neue Erkenntnisse über das Immunsystem und Therapieansätze für Krankheiten wie die Reisekrankheit.

Die unbemannte Sojusrakete, die voraussichtlich am 19. April vom Weltraumbahnhof Baikonur in Kasachstan abhebt, bringt einen Biosatelliten und mit ihm einen kleinen Experimentcontainter der Arbeitsgruppe von PD Dr. Michael Lebert, Lehrstuhl für Zellbiologie, ins All: ein künstliches Ökosystem, das den Namen Omegahab B-1 trägt. Die Lebensgemeinschaft in dem Aquarium besteht aus einer einzelligen Alge (Euglena gracilis) , der Wasserpflanze Hornkraut (Ceratophyllum), Buntbarschlarven (Oreochromis mossambicus), mexikanischen Bachflohkrebsen (Hyalella azteca) sowie einigen Posthornschnecken (Biomphalaria glabrata). Die Pflanzen produzieren den Sauerstoff für die Tierchen, deren freigesetztes Kohlendioxid wiederum den Pflanzen als Grundlage für die Photosynthese dient. Dazwischen haben die Biologen einen Filter eingebaut, in dem Bakterien – ähnlich wie in einem Aquarium zu Hause – die Ausscheidungen der Fische in kleinere Komponenten zerlegen. Diese dienen den Pflanzen als Dünger. Die Schnecken haben noch eine weitere Aufgabe: Sie sollen die Scheiben sauber halten, damit die Fische gefilmt werden können.

Erstmals wird damit ein vergleichsweise komplexes, abgeschlossenes Ökosystem ins All geschickt. Für das komplette Experiment ist kein Eingriff eines Menschen nötig. Zwar erscheint es auf den ersten Blick einfacher, wenn die Spezialisten auf der Weltraumstation ISS dieses Experiment durchführen würden, jedoch ist das aus Sicherheitsgründen nicht möglich: „Verliert das Aquarium unerwartet Wasser, dann ist dies in der Schwerelosigkeit sehr schwer wieder einzusammeln und die Elektronik an Bord könnte dadurch massiv beschädigt werden“, erklärt Zellbiologe Lebert.

Rückschlüsse auf die menschliche Immunabwehr

Jeden Millimeter nutzen die Wissenschaftler in dem Experimentcontainer aus Metall aus. Selbst am Deckel ist ein Teil der Elektronik befestigt, die die Biologen selbst entwickelt haben. Foto: FAU/Sebastian M. Strauch
Jeden Millimeter nutzen die Wissenschaftler in dem Experimentcontainer aus Metall aus. Selbst am Deckel ist ein Teil der Elektronik befestigt, die die Biologen selbst entwickelt haben.
Foto: FAU/Sebastian M. Strauch

Im Laufe der 30-tägigen Reise wird mehrmals automatisch eine kleine Menge Algen entnommen, deren aktueller Zustand in einer speziellen Fixierlösung konserviert wird. Dadurch können die Wissenschaftler untersuchen, wie sich die Algen während dieser Zeit verändern und nicht wie bisher nur den Unterschied vor und nach dem Raumflug analysieren. Sie wollen besser damit verstehen, wie sich Zellen in der Schwerelosigkeit verhalten und wie sie sich anpassen – bisher wussten Forscher lediglich, dass die Zellen auf den veränderten Zustand reagieren, aber nicht wie. So könnten die Wissenschaftler auch Erklärungen dafür finden, warum sich bei Menschen während Weltraumflügen die Immunabwehr der Körperzellen verringert. Wenn die Forscher nun den Mechanismen dahinter auf den Grund gehen, könnten Astronauten auf langen Missionen besser gegen die auftretende Immunschwäche geschützt werden. Bei den Fischen beobachten die Forscher, wie sich die Schwerelosigkeit auf die inneren Organe auswirkt. Die Erkenntnisse könnten helfen, neue Medikamente gegen die Reisekrankheit zu entwickeln. Die Ursache dieser Krankheit liegt in widersprüchlichen Informationen, die die menschlichen Sinnesorgane zur räumlichen Lage und zur Bewegung des Körpers übermitteln. Fische haben in Schwerelosigkeit ganz ähnliche Probleme und eignen sich daher gut als Modell.

Die Weltraummission findet im Rahmen des russischen Satellitenprogramms Bion statt, das im April nach dreizehnjähriger Pause fortgesetzt wird. Es ermöglicht automatisierte biologische Forschungen, die bis zu sechs Wochen dauern. Das Experiment der deutschen Wissenschaftler dient als Vorbereitung für ein umfassenderes Weltraumprojekt, dessen Start für das Jahr 2016 geplant ist.

 

PD Dr. Michael Lebert

Tel.: 09131/85-28217 (bis 5. April)

mlebert@biologie.uni-erlangen.de

(per E-Mail bis 7. April)

 

Dr. Peter Richter (ab 8. April)

Tel.: 09131/85-28222

prichter@biologie.uni-erlangen.de

 

Quelle

Blandina Mangelkramer Kommunikation und Presse

Friedrich-Alexander-Universität Erlangen-Nürnberg

 

Facebook
Twitter
WhatsApp
Pinterest
Print
Reddit
Archive

Ähnliche Beiträge

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Newsletter

Was beschäftigt die Aquaristik-Community? Der my-fish-Newsletter informiert dich über spannende Inhalte aus der Unterwasserwelt.

my-fish Podcast

Wir haben bei Zierfischgroßhändlern, Aquascapern, Züchtern und Liebhabern nachgefragt:

my-fish TV

Wir haben Ende 2018 dieses neue Format gestartet und werden in Zukunft auf diesem Kanal alles abdecken…

my-fish - Aus Freude an der Aquaristik
0
Lass uns doch ein Kommentar da!x
my-fish logo 2021

Auf my-fish.org Anmelden

my-fish logo 2021